Kathy and Cheryl are walking in a fundraiser. Kathy completes the course in 3.6 hours and Cheryl completes the course in 6 hours. Kathy walks two miles per hour faster than Cheryl. Find Kathy's speed and Cheryl's speed in miles per hour.

Respuesta :

Answer:

Explanation:

Here is what we know;

Both Kathy and Cheryl cover the same distance ( one course).

Kathy completes the course in 3.6 hours.

Kathy's speed is 2 miles/hour faster than Cheryl's

Cheryl completes the course in 6 hours

Cheryl's speed is yet unkown.

Now, the speed v is defined as

[tex]v=\frac{D}{t}[/tex]

where D is the distance covered and t is the time taken.

Now, let us say D = distance of one course. Then in Kathy's case, we have

[tex]v_{\text{kathy}}=\frac{D}{3.6hr}[/tex]

since Kathy's speed is 2 miles per hour faster than Cheryl's, we have

[tex]v_{\text{kathy}}=\frac{D}{3.6}=2+v_{\text{cheryl}}[/tex]

For Cheryl, we know that

[tex]v_{\text{cheryl}}=\frac{D}{6hr}[/tex]

or simply

[tex]v_{\text{cheryl}}=\frac{D}{6}[/tex]

Putting this into the equation for Kathy's speed gives

[tex]v_{\text{kathy}}=\frac{D}{3.6}=2+v_{\text{cheryl}}\Rightarrow v_{\text{kathy}}=\frac{D}{3.6}=2+\frac{D}{6}[/tex][tex]\Rightarrow\frac{D}{3.6}=2+\frac{D}{6}[/tex]

We have to solve for D, the distance of a course.

Subtracting D/6 from both sides gives

[tex]\frac{D}{3.6}-\frac{D}{6}=2[/tex][tex](\frac{1}{3.6}-\frac{1}{6})D=2[/tex][tex]\frac{1}{9}D=2[/tex][tex]D=18\text{miles}[/tex]

Hence, the distance of a course is 18 miles.

With the value of D in hand, we can now find the velocity of Kathy and Cheryl.

[tex]v_{\text{cheryl}}=\frac{D}{6hr}=\frac{18\text{miles}}{6hr}[/tex][tex]\Rightarrow\boxed{v_{\text{cheryl}}=3\text{ miles/hr}}[/tex]

Hence, Cheryl's speed is 3 miles/hr.

Next, we find Kathy's speed.

[tex]v_{\text{kathy}}=\frac{D}{3.6hr}=\frac{18\text{miles}}{3.6hr}[/tex][tex]\boxed{v_{\text{kathy}}=5\text{miles}/hr\text{.}}[/tex]

Hence, Kathy's speed is 5 miles/hr.

Therefore, to summerise,

Kathy's speed = 5 miles/hr

Cheryl's speed = 3 miles/hr