Respuesta :

[tex]\sin x(\cos (x)\cot (x)-\sin (x))[/tex]

Express cot(x) as:

[tex]\begin{gathered} \cot (x)=\frac{\cos (x)}{\sin (x)} \\ so\colon \\ \sin x(\cos (x)\frac{\cos (x)}{\sin (x)}-\sin (x)) \end{gathered}[/tex]

Use distributive property:

[tex]\cos (x)^2-\sin ^2(x)[/tex]

Using the double angle identity:

[tex]\cos ^2(x)-\sin ^2(x)=\cos (2x)[/tex]

Answer:

cos(2x)