Respuesta :

the points represent a parabola

the equation is

[tex]y=ax^2+bx+c[/tex]

we need the first three points

in this case, I will use

(1,2) (2,5) and (3,10)

for the point (1,2)

[tex]2=a+b+c[/tex]

for the point (2,5)

[tex]\begin{gathered} 5=a(2)^2+b(2)+c \\ 5=4a+2b+c \end{gathered}[/tex]

for the point (3,10)

[tex]\begin{gathered} 10=a(3)^2+b(3)+c \\ 10=9a+3b+c \end{gathered}[/tex]

we have a system of three equations and three variables

[tex]\begin{gathered} 2=a+b+c \\ 5=4a+2b+c \\ 10=9a+3b+c \end{gathered}[/tex]

solving the system equation we obtain the values of a,b and c

[tex]\begin{gathered} a=1 \\ b=0 \\ c=1 \end{gathered}[/tex]

the equation is

[tex]y=x^2+1[/tex]