Respuesta :

Answer:

Table A

Explanation:

The ratio of x to y is 3 to 8.

To determine which table represents the ratio, convert the first pair of points in each of the options to their simplest form.

Option A

When x=15, y=40

[tex]\frac{x}{y}=\frac{15}{40}=\frac{3\times5}{8\times5}=\frac{3}{8}[/tex]

Option B

When x=8, y=32

[tex]\frac{x}{y}=\frac{8}{32}=\frac{8}{4\times8}=\frac{1}{4}[/tex]

Option C

When x=9, y=24

[tex]\frac{x}{y}=\frac{9}{24}=\frac{3\times3}{3\times8}=\frac{3}{8}[/tex]

However, when x=15, and y=35

[tex]\frac{x}{y}=\frac{15}{35}=\frac{3\times5}{7\times5}=\frac{3}{7}[/tex]

Therefore, the ratio in Option C is not constant.

Option D

When x=16, y=6

[tex]\frac{x}{y}=\frac{16}{6}=\frac{2\times8}{2\times3}=\frac{8}{3}[/tex]

Therefore, the table that represents the given ratio is Option A.

Note:

• After using the first column in Table C, we find 3/8. But we already had 3/8 in Table A.

,

• Since there is to be just one answer, we tested using another column in Table C.

,

• If you test using another column in Table A, you will still get 3/8.