Respuesta :

At any right angle, the sum of the 2 acute angles is 90 degrees

Then the 2 acute angles are complementary

sin one of the angle = cos the other angle

cos one of the angle = sin the other angle

From the figure, we can see

Triangle UVT is a right angle at V

Then v is the hypotenuse, u and t are the legs od the right angle

Now, let us answer the questions

Part (1):

[tex]\begin{gathered} \sin T=\frac{\text{opposite}}{\text{hypotenuse}} \\ \sin T=\frac{t}{v} \end{gathered}[/tex][tex]\begin{gathered} \cos T=\frac{adjacent}{\text{hypotenuse}} \\ \cos T=\frac{u}{v} \end{gathered}[/tex][tex]\begin{gathered} \sin U=\frac{opposite}{hypotenuse} \\ \sin U=\frac{u}{v} \end{gathered}[/tex][tex]\begin{gathered} \cos U=\frac{adjacent}{\text{hypotenuse}} \\ \cos U=\frac{t}{v} \end{gathered}[/tex]

Part (2):

Since [tex]m\angle T+m\angle U=90^{\circ}[/tex]complementary

Part (3):

The correct statements are

[tex]\begin{gathered} \cos T=\sin U\rightarrow1st \\ \sin T=\cos U\rightarrow3rd \end{gathered}[/tex]

Part (4):

Since cos a= sin b, then

a + b = 90 degrees

To find the missing angle subtract 73 from 90

[tex]90-73=17[/tex]

Then the answer is

[tex]\cos (73^{\circ})=\sin (17^{\circ})[/tex]