Figure 1 shows a right-angled glass prism in contact with a transparent substance on one of the faces. One of the other angles of the prism is θ.Apply Snell's Law to calculate the angle α.

Identify the angle of incidence and the angle of refraction when the ray passes from the transparent substance to the air:
The refractive index of the transparent substance is 1.09 and the refractive index of air is close to 1. Then:
[tex]\begin{gathered} 1\cdot\sin(x)=1.09\cdot\sin(65º) \\ \\ \Rightarrow\sin(x)=1.09\sin(65º) \\ \\ \Rightarrow x=\sin^{-1}\left(1.09\sin(65º)\right) \\ \\ \therefore x=81.0688...º \end{gathered}[/tex]The angle α is complementary to the angle x. Then:
[tex]\begin{gathered} \alpha+x=90º \\ \\ \Rightarrow\alpha=90º-x=90º-81.0688...º=8.93...º \end{gathered}[/tex]Therefore, the angle α is equal to 8.93º.