Respuesta :

Given the dimensions of the rectangular solid as:

[tex]\begin{gathered} \text{length(l) = 28fe}et \\ \text{width(w) = 25fe}et \\ \text{height(h) = 24fe}et \end{gathered}[/tex]

The formula for the surface area of the solid is

[tex]\begin{gathered} A=2(lw+lh+hw) \\ lw=28\times25=700\text{feet}^2 \\ lh=28\times24=672\text{feet}^2 \\ hw=24\times25=600\text{feet}^2 \\ \therefore A=2(700+672+600) \\ A=3,944\text{ fe}et^2 \end{gathered}[/tex]

The formula for the volume of the solid is

[tex]\begin{gathered} V=lwh \\ V=28\times25\times24 \\ V=16,800\text{ feet}^3 \end{gathered}[/tex]

The surface area is 3944 feet^2

The volume is 16800 feet^3