Respuesta :

ANSWER

[tex]x=\frac{2}{5};x=-\frac{1}{3}[/tex]

EXPLANATION

We want to solve the given quadratic equation by using the quadratic formula:

[tex]15x^2-x-2=0[/tex]

The quadratic formula is:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

where a = coefficient of x²

b = coefficient of x

c = constant

From the given equation, we have that:

[tex]a=15,b=-1,c=-2[/tex]

Therefore, solving using the quadratic formula, we have:

[tex]\begin{gathered} x=\frac{-(-1)\pm\sqrt[]{(-1)^2-4(15)(-2)}}{2(15)} \\ x=\frac{1\pm\sqrt[]{1+120}}{30} \\ x=\frac{1\pm\sqrt[]{121}}{30}=\frac{1\pm11}{30} \\ \Rightarrow x=\frac{1+11}{30};x=\frac{1-11}{30} \\ \Rightarrow x=\frac{12}{30};x=\frac{-10}{30} \\ x=\frac{2}{5};x=-\frac{1}{3} \end{gathered}[/tex]

That is the solution of the quadratic equation.