Respuesta :

Given

[tex]\frac{\sqrt[3]{ab}}{\sqrt[3]{25}}[/tex]

Notice that,

[tex]\frac{1}{\sqrt[3]{25}}=\frac{1}{25^{\frac{1}{3}}}=\frac{1}{5^{\frac{2}{3}}}=\frac{1}{5^{1-\frac{1}{3}}}=\frac{1}{5*5^{-\frac{1}{3}}}=\frac{1}{5}*5^{\frac{1}{3}}=\frac{\sqrt[3]{5}}{5}[/tex]

Therefore,

[tex]\Rightarrow\frac{\sqrt[3]{ab}}{\sqrt[3]{25}}=\frac{\sqrt[3]{ab}*\sqrt[3]{5}}{5}=\frac{\sqrt[3]{5ab}}{5}[/tex]

Thus, the answer is (5ab)^(1/3)/5, the first option.