The following is a sample of 20 measurements.11 8 6 91210121213128 999131111 6 1211Da. Computex, s2, s for this sample.x = 10.2 (Round to two decimal places as needed.)s2 = 89.68(Round to two decimal places as needed.)

The following is a sample of 20 measurements11 8 6 91210121213128 999131111 6 1211Da Computex s2 s for this samplex 102 Round to two decimal places as neededs2 class=

Respuesta :

Given:

The data is,

[tex]11,8,6,9,12,10,12,12,13,12,8,9,9,9,13,11,11,6,12,11[/tex]

The mean of given data is,

[tex]\bar{x}=10.2[/tex]

The varience is given as,

[tex]\begin{gathered} s^2=\sum ^n_{i=1}\frac{\left(x_i-\bar{x}\right)^2}{n-1} \\ =\frac{1}{20-1}\lbrack(11-10.2)^2+(8-10.2)^2+(6-10.2)^2+(9-10.2)^2+(12-10.2)^2+(10-10.2)^2+(12-10.2)^2+(12-10.2)^2+(13-10.2)^2+(12-10.2)+(8-10.2)^2+(9-10.2)^2+(9-10.2)^2+(9-10.2)^2+(13-10.2)^2(11-10.2)^2+(11-10.2)^2+(6-10.2)+(12-10.2)^{22}+(11-10.2)^2\rbrack \\ =\frac{85.2}{19} \\ =4.48 \end{gathered}[/tex]

So, the value of varience is ,

[tex]s^2=4.48[/tex]

The standard deviation is,

[tex]s=\sqrt[]{4.48}=2.12[/tex]