Respuesta :

Given the vectors:

[tex]\begin{gathered} u=\langle0,-2) \\ v=\langle-3,0\rangle \end{gathered}[/tex]

You need to apply Dot Product in order to find:

[tex]v\cdot v[/tex]

By definition, for:

[tex]\begin{gathered} A=\langle a_x,a_y\rangle \\ B=\langle b_x,b_y) \end{gathered}[/tex]

The Dot Product is:

[tex]A\cdot B=a_xb_x+a_yb_y[/tex]

In this case, you are multiplying the same vector by itself. Then, by definition:

[tex]v\cdot v=|v|^2[/tex]

Hence:

[tex]\begin{gathered} v\cdot v=(-3)(-3)+(0)(0) \\ v\cdot v=9 \end{gathered}[/tex]

Hence, the answer is:

[tex]v\cdot v=9[/tex]