Respuesta :

Answer:

[tex](x+\frac{5}{2})^2-\frac{1}{4}[/tex]

Explanation:

Given a quadratic equation of the form:

[tex]y=ax^2+bx+c[/tex]

To "complete the squares" is to rewrite it as:

[tex]y=a(x+d)^2+e[/tex]

Where:

[tex]d=\frac{b}{2a}[/tex][tex]e=c-\frac{b^2}{4a}[/tex]

In this case, we are given:

[tex]y=x^2+5x+6[/tex]

Then:

a = 1

b = 5

c = 6

Using the formulas above:

[tex]d=\frac{5}{2\cdot1}=\frac{5}{2}[/tex][tex]e=6-\frac{5^2}{4\cdot1}=6-\frac{25}{4}=-\frac{1}{4}[/tex]

Now, we can rewrite:

[tex]y=(x+\frac{5}{2})^2-\frac{1}{4}[/tex]