Respuesta :

Explanation:

The functions are givenm below as

[tex]\begin{gathered} f(x)=4x^2+1 \\ g(x)=x^2-5 \end{gathered}[/tex]

Find:

[tex](f+g)(x)[/tex]

To figure out the value of the function above, we will use the formula below

[tex](f+g)(x)=f(x)+g(x)[/tex]

By substituting the functions, we will have

[tex]\begin{gathered} (f+g)(x)=f(x)+g(x) \\ (f+g)(x)=4x^2+1+x^2-5 \\ collect\text{ similar terms, we will have} \\ (f+g)(x)=4x^2+x^2+1-5 \\ (f+g)(x)=5x^2-4 \end{gathered}[/tex]

Hence,

The final answer is

[tex]\begin{equation*} 5x^2-4 \end{equation*}[/tex]

OPTION B is the correct answer