Respuesta :

We have that a varies directly as the square of b.

It means that when a increases, also b will increase.

Then, we can write the next equation:

[tex]a=kb^2[/tex]

Where k is the constant of variation.

If a=5 when b=3

Then:

[tex]\begin{gathered} 5=k(3)^2 \\ 5=k9 \\ \text{Solve for k:} \\ k=\frac{5}{9} \end{gathered}[/tex]

Now, we need to find the a value when b=2.

Hence:

[tex]\begin{gathered} a=kb \\ a=k(2)^2 \\ \text{Where the contant k=(}\frac{5}{9}) \end{gathered}[/tex]

Replacing

[tex]\begin{gathered} a=(\frac{5}{9})2^2 \\ a=(\frac{5}{9})4 \\ a=\frac{20}{9} \end{gathered}[/tex]

Therefore, when b=2, a value will be equal to 20/9.