Respuesta :

Given that each of Mike's mug holds

[tex]\frac{4}{5}\text{ of a pint of liquid}[/tex]

This implies that

[tex]1\text{ mug holds }\frac{4}{5}\text{ pints}[/tex]

Let x mugs in total, hold 4 pints of chocolate.

This implies that

[tex]x\text{ mugs hold 4 pints}[/tex]

Since each friend is assigned a mug, the total number of mugs is the same as the total number of friends.

Thus,

[tex]\begin{gathered} 1\text{ mug }\Rightarrow\frac{4}{5}\text{ pints} \\ x\text{ mug }\Rightarrow4\text{ pints} \\ \end{gathered}[/tex]

By cross-multiplication, we have

[tex]\begin{gathered} 1\text{ mug }\times\text{ 4 pints = }\frac{4}{5}\text{ pints }\times\text{ x mug} \\ \end{gathered}[/tex]

Make x the subject of the formula

[tex]\begin{gathered} x=\frac{1\text{ mug }\times\text{ 4 pints}}{\frac{4}{5}\text{ pints}} \\ x=\text{ 5} \end{gathered}[/tex]

Thus, 5 friends will get hot chocolate