I need help solving this practiceThe answer options for the three boxes are located at the bottom of the picture One answer option per box

To answer this question we will use the following trigonometric identity:
[tex]\sin^2\theta+\cos^2\theta=1.[/tex]Solving the first equation for cosθ we get:
[tex]\begin{gathered} x-2=4\cos\theta+2-2, \\ x-2=4\cos\theta, \\ \frac{x-2}{4}=\frac{4\cos\theta}{4}, \\ \frac{x-2}{4}=\cos\theta. \end{gathered}[/tex]Solving the second equation for sinθ we get:
[tex]\begin{gathered} y+5=2\sin\theta-5+5, \\ y+5=2\sin\theta, \\ \frac{y+5}{2}=\frac{2\sin\theta}{2} \\ \frac{y+5}{2}=\sin\theta. \end{gathered}[/tex]Substituting
[tex]\cos\theta=\frac{x-2}{4}\text{ and }\sin\theta=\frac{y+5}{2}[/tex]in the trigonometric identity we get:
[tex](\frac{x-2}{4})^2+(\frac{y+5}{2})^2=1.[/tex]Simplifying the above result we get:
[tex]\frac{(x-2)^2}{16}+\frac{(y+5)^2}{4}=1[/tex]Finally, recall that:
[tex]-1\leq\cos\theta\le1.[/tex]Therefore:
[tex]\begin{gathered} -4+2\leq4\cos\theta+2\leq4+2, \\ -2\leq4\cos\theta+2\leq6. \end{gathered}[/tex]Therefore x is on the interval:
[tex][-2,6].[/tex]Answer:
[tex]\frac{(x-2)^2}{16}+\frac{(y+5)^2}{4}=1[/tex]where x is on the interval
[tex][-2,6].[/tex]