Let,
[tex]\begin{gathered} (x_1,y_1)=(8,-2) \\ (x_2,y_2)=(0,14) \end{gathered}[/tex]The expression to calculate the equation of a straight line passing through two given points is,
[tex]\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}[/tex]Substitute values in the above expression.
[tex]\begin{gathered} \frac{y-(-2)}{14-(-2)}=\frac{x-8}{0-8} \\ \frac{y+2}{14+2}=\frac{x-8}{-8} \\ \frac{y+2}{16}=\frac{8-x}{8} \\ y+2=\frac{16}{8}(8-x) \\ y+2=2(8-x) \\ y=2\times8-2x+2 \\ y=16-2x+2 \\ y=18-2x \end{gathered}[/tex]Thus, the expression of the line passing through the given points (8,-2) and (0,14) is 'y=18-2x'.