Explanation
we can write the equation in the form
[tex]y=mx+b[/tex]where m is the slope and b is the y-intercept
Step 1
find the coordinate of the y-intercept
when, the line intersects the y axis, the x value is zero, so
[tex]\begin{gathered} \text{coordinate of the y-intercept} \\ (0,6) \end{gathered}[/tex]Step 2
find the slope of the line:
when you know 2 points of a line, you can find the slope by using:
[tex]\begin{gathered} \text{slope}=\frac{change\text{ in y }}{\text{change in x}}=\frac{y_2-y_1}{x_2-x_1} \\ \text{where} \\ P1(x_1,y_1) \\ P2(x_2,y_2) \end{gathered}[/tex]then, Let
P1(3.3)
P2(0,6)
replace,
[tex]\begin{gathered} \text{slope}=\frac{change\text{ in y }}{\text{change in x}}=\frac{y_2-y_1}{x_2-x_1} \\ \text{slope}=\frac{6-3}{0-3}=\frac{3}{-3}=-1 \end{gathered}[/tex]Step 2
hence, we have
slope=-1
y-intercept =6
replace
[tex]\begin{gathered} y=mx+b\rightarrow y=-1x+6 \\ y=-x+6 \end{gathered}[/tex]I hope this helps you