find the length of arc AC. Round to the nearest hundredth.

Answer:
7.33 units
Explanation:
We were given the following information:
[tex]\begin{gathered} m\angle ABC=30 \\ AB=14units \end{gathered}[/tex]We will proceed to obtain the length of the arc AB as shown below:
[tex]\begin{gathered} s=2\pi r\times\frac{\theta}{360^{\circ}} \\ \theta=m\angle ABC=30^{\circ} \\ r=AB=14 \\ \text{Substitute the values for the variables into the equation, we have:} \\ s=2\pi\times14\times\frac{30}{360} \\ s=\frac{2\pi\times14\times30}{360} \\ s=7.330 \\ s=7.33units \\ \\ \therefore s=7.33units \end{gathered}[/tex]Therefore, the length of the arc is 7.33 units