Elimination method: You either add or subtract the equations to get an equation in one variable.
When the coefficients of one variable are opposites you add the equations to elimante a variable and when the coefficients of one variable are equal you subtract the equations to eliminate a variable.
In this case:
[tex]\begin{gathered} 3x-2y=24\text{ } \\ x+2y=48 \end{gathered}[/tex]We can add both equations, we get:
[tex]\begin{gathered} 4x=72 \\ x=\frac{72}{4} \\ x=18 \end{gathered}[/tex]Since we have the x-value, we can substitute it in either of the two original equations to get y-value:
[tex]\begin{gathered} 3x-2y=24 \\ 3(18)-2y=24 \\ 54-24=2y \\ 30=2y \\ y=\frac{30}{2} \\ y=15 \end{gathered}[/tex]Solution for the sytem of equations:
x= 18; y=15