Respuesta :

First of all let's recal some properties of logarithmic functions:

[tex]\begin{gathered} (1)\text{ }\log _a(b\cdot c)=\log _ab+\log _ac \\ (2)\text{ }\log _a(\frac{b}{c})=\log _ab-\log _ac \\ (3)\log _a(b^c)=c\cdot\log _ab \end{gathered}[/tex]

So now that we have this properties in mind let's take a look at each of the three statements given.

First we have:

[tex]\log _3(cd^4)[/tex]

Here we can use property (1) since we have a multiplication inside the logarithm:

[tex]\log _3(cd^4)=\log _3\lbrack(c)\cdot(d^4)\rbrack=\log _3(c)+\log _3(d^4)[/tex]

Then we can use property (3) in the second term:

[tex]\log _3(cd^4)=\log _3(c)+\log _3(d^4)=\log _3(c)+4\log _3(d)[/tex]

But this last expression is different than the one in the statement:

[tex]\log _3(c)+4\log _3(d)\ne4\log _3(c)+4\log _3(d)[/tex]

Then the first statement is False.

In the second statement we have:

[tex]\frac{3}{4}(\ln a+\ln b)=\ln (\sqrt[4]{a^3b^3})[/tex]

Let's take the expression inside parenthesis at the left side and use property (1):

[tex]\frac{3}{4}(\ln a+\ln b)=\frac{3}{4}\ln (ab)[/tex]

We can use property (3) in this last expression:

[tex]\frac{3}{4}\ln (ab)=\ln \lbrack(ab)^{\frac{3}{4}}\rbrack[/tex]

Here is important to recal some properties of powers:

[tex]\begin{gathered} (i)\text{ }A^{\frac{B}{C}}=A^{B\cdot\frac{1}{C}}=(A^B)^{\frac{1}{C}} \\ (ii)\text{ }A^{\frac{1}{B}}=\sqrt[B]{A} \end{gathered}[/tex]

So if we use property (i):

[tex]\ln \lbrack(ab)^{\frac{3}{4}}\rbrack=\ln \lbrack(a^3b^3)^{\frac{1}{4}}\rbrack[/tex]

And using property (ii) we get:

[tex]\ln \lbrack(a^3b^3)^{\frac{1}{4}}\rbrack)=\ln \sqrt[4]{a^3b^3}[/tex]

Which means that:

[tex]\frac{3}{4}(\ln a+\ln b)=\ln \sqrt[4]{a^3b^3}[/tex]

Then the second statement is True.

The third statement is:

[tex]3\ln e-2\ln f=\ln (\frac{e^3}{f^3})[/tex]

Let's take the expression in the left and use property (3) in both terms:

[tex]3\ln e-2\ln f=\ln e^3-\ln f^2[/tex]

Now we use property (2):

[tex]3\ln e-2\ln f=\ln e^3-\ln f^2=\ln (\frac{e^3}{f^2})[/tex]

Which proves that the third statement is True.