Respuesta :

[tex]\begin{gathered} \text{slope}_a=4 \\ \text{slope}_b=-\frac{3}{4} \end{gathered}[/tex]

Explanation

Step 1

when you have 2 points of a line (P1 and P2) you can find the slope using:

[tex]\begin{gathered} \text{slope}=\frac{\Delta y}{\Delta x}=\frac{change\text{ in y}}{\text{change in x}}=\frac{y_2-y_1}{x_2-x_1} \\ \text{where} \\ P1(x_{1,}y_1) \\ P2(x_2,y_2) \end{gathered}[/tex]

then, for table 1 pick 2 points

Let

P1(1,2)

P2(3,10)

replace

[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1} \\ \text{slope}=\frac{10-2}{3-1}=\frac{8}{2}=4 \end{gathered}[/tex]

Step 2

now, for table b

Let

P1(-6,8)

P2(-2,5)

replace

[tex]\begin{gathered} \text{slope}=\frac{5-8}{-2-(-6)}=\frac{-3}{-2+6}=\frac{-3}{4}=-\frac{3}{4} \\ \text{slope}_b=-\frac{3}{4} \end{gathered}[/tex]

I hope this helps you