Respuesta :

The given equation is

[tex]|2x+3|+4=1[/tex]

First, we need to isolate the absolute value, we'll subtract 4 one each side

[tex]\begin{gathered} |2x+3|+4-4=1-4 \\ |2x+3|=-3 \end{gathered}[/tex]

Now, we rewrite the equation in two equations

[tex]\begin{gathered} 2x+3=-3 \\ 2x+3=-(-3)\rightarrow2x+3=3 \end{gathered}[/tex]

Let's solve each equation

[tex]\begin{gathered} 2x+3=-3 \\ 2x=-3-3 \\ 2x=-6 \\ x=-\frac{6}{2}=-3 \end{gathered}[/tex]

So, the first solution is -3.

[tex]\begin{gathered} 2x+3=3 \\ 2x=3-3=0 \\ x=\frac{0}{2}=0 \end{gathered}[/tex]

The second solution is zero.

Therefore, the solutions are -3, and 0.