Given:
Leo line perpendicular to the line shown
Line pass (F,G)
Grid line,
Find-:
Equation of Leo's line.
Explanation-:
Slope of grid line is:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Where,
[tex]\begin{gathered} (x_1,y_1)=\text{ First point} \\ \\ (x_2,y_2)\text{ = Second point} \end{gathered}[/tex]
Choose any two point
[tex]\begin{gathered} (x_1,y_1)=(0,-2) \\ \\ (x_2,y_2)=(2,4) \end{gathered}[/tex]
Then slope is:
[tex]\begin{gathered} m=\frac{4-(-2)}{2-0} \\ \\ m=3 \end{gathered}[/tex]
Slope of perpendicular line is:
[tex]\begin{gathered} m_1m_2=-1 \\ \\ m_2=-\frac{1}{m_1} \\ \\ m_2=-\frac{1}{3} \end{gathered}[/tex]
So the equation of Leo's line is:
[tex]y-y_1=m(x-x_1)[/tex]
Line pass (F,G) then,
[tex](x_1,y_1)=(F,G)[/tex]
So, equation of line is:
[tex]y-G=-\frac{1}{3}(x-F)[/tex]