An engineer determines that the angle of elevation from her position to the top of a tower is 32°. She measures the angle of elevation again from a point 50 m closer to the tower and finds it to be 52°. Find the height of the tower

Respuesta :

Given :

The angle of elevation from her position to the top of a tower is 32°.

The angle of elevation again from a point 50 m closer to the tower and finds it to be 52°.

The following figure represents the given situation :

Let the height of the tower h

And the distance between the tower and the second point = x

So, from the larger triangle :

[tex]\begin{gathered} \tan 32=\frac{h}{x+50} \\ \\ h=(x+50)\cdot\tan 32 \end{gathered}[/tex]

From the smaller triangle :

[tex]\begin{gathered} \tan 52=\frac{h}{x} \\ \\ h=x\cdot\tan 52 \end{gathered}[/tex]

So,

[tex](x+50)\cdot\tan 32=x\tan 52[/tex]

solve for x:

[tex]\begin{gathered} x\cdot\tan 32+50\tan 32=x\cdot\tan 52 \\ 50\cdot\tan 32=x\cdot\tan 52-x\cdot\tan 32 \\ 50\cdot\tan 32=x\cdot(\tan 52-\tan 32) \\ \\ x=\frac{50\cdot\tan 32}{\tan 52-\tan 32}\approx47.7 \end{gathered}[/tex]

so, the height h will be :

[tex]h=x\cdot\tan 52=47.7\cdot\tan 52\approx61m[/tex]

So, the height of the tower​ = 61 m

Ver imagen RashedY111406