Respuesta :

In the right triangles whose legs are a, b and its hypotenuse is c

[tex]a^2+b^2=c^2[/tex]

In triangle JLK

∵ LK and JL are the legs of the triangle

∵ KJ is the hypotenuse

[tex]\therefore(LK)^2+(JL)^2=(KJ)^2[/tex]

∵ KL = 14 m and KJ = 18 m

Substitute them in the rule above to find JL

[tex]\begin{gathered} (14)^2+(JL)^2=(18)^2 \\ 196+(JL)^2=324 \end{gathered}[/tex]

Subtract 196 from both sides

[tex]\begin{gathered} 196-196+(JL)^2=324-196 \\ (JL)^2=128 \end{gathered}[/tex]

Take a square root for both sides

[tex]\begin{gathered} \sqrt[]{(JL)^2}=\sqrt[]{128} \\ JL=11.3137085 \end{gathered}[/tex]

Round it to the nearest hundredth

[tex]\therefore JL=11.31m[/tex]

The answer is 11.31 m