Use -b/2a to find x and then substitute your answer to find y.

Step 1: Write the given expression
We have been given the equation:
[tex]y=x^2-6x-6[/tex]If we compare coefficients this with the general quadratic equation
[tex]y=ax^2+bx+c[/tex]We can infer that
a= 1
b=-6
c=-6
To get x and y,
Step 2: Use the relationship provided
To get x
[tex]x=-\frac{b}{2a}[/tex][tex]\begin{gathered} x=\frac{-\mleft(-6\mright)}{2\text{ x 1}}=\frac{6}{2}=3 \\ \\ x\text{ = 3} \end{gathered}[/tex]To get y, we will substitute the value of x=3 into the expression given
[tex]\begin{gathered} y=3^2-6\text{ x 3 -6} \\ y=9\text{ -18 -6} \\ y=\text{ 9-24} \\ y=-15 \end{gathered}[/tex]Hence
x = 3
y=-15