Respuesta :

Step 1: Write the given expression

We have been given the equation:

[tex]y=x^2-6x-6[/tex]

If we compare coefficients this with the general quadratic equation

[tex]y=ax^2+bx+c[/tex]

We can infer that

a= 1

b=-6

c=-6

To get x and y,

Step 2: Use the relationship provided

To get x

[tex]x=-\frac{b}{2a}[/tex][tex]\begin{gathered} x=\frac{-\mleft(-6\mright)}{2\text{ x 1}}=\frac{6}{2}=3 \\ \\ x\text{ = 3} \end{gathered}[/tex]

To get y, we will substitute the value of x=3 into the expression given

[tex]\begin{gathered} y=3^2-6\text{ x 3 -6} \\ y=9\text{ -18 -6} \\ y=\text{ 9-24} \\ y=-15 \end{gathered}[/tex]

Hence

x = 3

y=-15