Respuesta :

Given:

The sequence is

[tex]a_n=\frac{3}{n+1}[/tex]

Required:

Find the first term, the second term, the third term, the fourth term and the 100th term.

Explanation:

The given sequence is:

[tex]a_{n}=\frac{3}{n+1}[/tex]

Substitute n = 1

[tex]\begin{gathered} a_1=\frac{3}{1+1} \\ a_1=\frac{3}{2} \end{gathered}[/tex]

Substitute n = 2

[tex]\begin{gathered} a_2=\frac{3}{2+1} \\ a_2=\frac{3}{3} \\ a_2=1 \end{gathered}[/tex]

Substitute n = 3

[tex]\begin{gathered} a_3=\frac{3}{3+1} \\ a_3=\frac{3}{4} \end{gathered}[/tex]

Substitute n = 4

[tex]\begin{gathered} a_4=\frac{3}{4+1} \\ a_4=\frac{3}{5} \end{gathered}[/tex]

The term of the sequence are:

[tex]\frac{3}{2},1,\frac{3}{4},\frac{3}{5}[/tex]

The given series is in HP

We will write it in AP as:

[tex]\frac{2}{3},1,\frac{4}{3},\frac{5}{3}[/tex]

So the common difference of the given sequence is:

[tex]\begin{gathered} 1-\frac{2}{3}=\frac{1}{3} \\ \frac{4}{3}-1=\frac{1}{3} \\ \frac{5}{3}-\frac{4}{3}=\frac{1}{3} \end{gathered}[/tex]

The nth term of the AP series is given by the formula:

[tex]a_n=a+(n-1)d[/tex]

where a = first term

n = number of terms

d = common difference

[tex]\begin{gathered} a_{100}=\frac{2}{3}+(100-1)\times\frac{1}{3} \\ a_{100}=\frac{2}{3}+99\times\frac{1}{3} \\ a_{100}=\frac{2+99}{3} \\ a_{100}=\frac{101}{3} \end{gathered}[/tex]

This is the 100th term for the AP.

The 100th term of the given HP sequence is:

[tex]\frac{3}{101}[/tex]

Final Answer:

[tex]\begin{gathered} First\text{ term = }\frac{3}{2} \\ Second\text{ term = 1} \\ Third\text{ term = }\frac{3}{4} \\ Fourth\text{ term = }\frac{3}{5} \\ 100th\text{ term = }\frac{3}{101} \end{gathered}[/tex]