Respuesta :

• The value of the discriminant ,D= -16

,

• The solution to the quadratic equation is

[tex]x=\frac{1+2i}{5}\text{ or }\frac{1-2i}{5}[/tex]

Step - by - Step Explanation

What to find?

• The discriminant d= b² - 4ac

,

• The solution to the quadratic equation.

Given:

5x² - 2x + 1=0

Comparing the given equation with the general form of the quadratic equation ax² + bx + c=0

a=5 b=-2 and c=1

Uisng the quadratic formula to solve;

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

The discriminant D=b² - 4ac

Substitute the values into the discriminant formula and simplify.

D = (-2)² - 4(5)(1)

D = 4 - 20

D = -16

We can now proceed to find the solution of the quadratic equation by substituting into the quadratic formula;

[tex]x=\frac{-(-2)\pm\sqrt[]{-16}}{2(5)}[/tex]

Note that:

√-1 = i

[tex]x=\frac{2\pm\sqrt[]{16\times-1}}{10}[/tex]

[tex]x=\frac{2\pm\sqrt[]{16}\times\sqrt[]{-1}}{10}[/tex][tex]x=\frac{2\pm4i}{10}[/tex][tex]x=\frac{2}{10}\pm\frac{4i}{10}[/tex][tex]x=\frac{1}{5}\pm\frac{2}{5}i[/tex][tex]x=\frac{1\pm2i}{5}[/tex]

That is;

[tex]\text{Either x=}\frac{1+2i}{5}\text{ or x=}\frac{1-2i}{5}[/tex]