Respuesta :

Explanation:

First, we need to know that by definition:

[tex]i^2=-1[/tex]

Then, to multiply the complex numbers, we can apply the distributive property as:

[tex]2i\cdot(3-2i)=2i\cdot3-2i\cdot2i[/tex]

Solving the multiplication and applying the definition, we get:

[tex]\begin{gathered} 2i\cdot(3-2i)=6i-4i^2 \\ 2i\cdot(3-2i)=6i-4(-1) \\ 2i\cdot(3-2i)=6i+4 \end{gathered}[/tex]

So, the product of the complex numbers is 6i + 4

Answer: 6i + 4