Use the laws of exponents and the commutative property of multiplications to rewrite the expression:
[tex](2x^4)(13x^5y)(5y^3)[/tex]Factor out constants:
[tex]=2\cdot13\cdot5\cdot x^4\cdot x^5\cdot y\cdot y^3[/tex]Simplify the coefficient of the expression:
[tex]=130x^4\cdot x^5\cdot y\cdot y^3[/tex]Use the fact that (a^n)(a^m)=a^(n+m) to simplify the powers of the variables x and y:
[tex]\begin{gathered} =130x^{4+5}\cdot y^{1+3} \\ =130x^9\cdot y^4 \end{gathered}[/tex]Therefore:
[tex](2x^4)(13x^5y)(5y^3)=130x^9y^4[/tex]