The shape in the question is a cylinder
The formula of the volume of a cylinder is given as:
[tex]\begin{gathered} V_{CYLINDER}=\pi r^2h \\ \text{Where,} \\ r=\text{radius}=7yd \\ h=\text{height of the cylinder=9yd} \\ \pi=3.14 \end{gathered}[/tex]By substitution, we will have the volume of the cylinder as
[tex]\begin{gathered} V_{_{_{CYLINDER}}}=3.14\times(7yd)^2\times9yd \\ V_{CYLINDER}=3.14\times49yd^2\times9yd \\ V_{CYLINDER=}1384.74yd^3 \\ to\text{ the nearest tenth } \\ V_{CYLINDER}=1384.7yd^3 \end{gathered}[/tex]Therefore,
The volume of the figure in the question is 1384.7yd³ to the nearest tenth