Determine the conic section given by each of the following equations. Be sure to showall work to find the standard form of the equation of each conic section.1. 3x 2 + 5y 2 − 12x + 30y = −42

Respuesta :

Solution:

The standard form of eqution of a conic section is;

[tex]\begin{gathered} Ax^2+Bxy+Cy^2+Dx+Ey+F=0 \\ \\ \text{ Where;} \\ A,B,C,D,E,F\text{ are real numbers;} \\ \\ A0,B\ne0,C\ne0 \end{gathered}[/tex]

Given the equation of the conic section;

[tex]3x^2+5y^2-12x+30y=-42[/tex]

Hence;

[tex]A=3,C=5,B=0[/tex]

Then;

[tex]\begin{gathered} B^2-4AC=(0)^2-4(3)(5) \\ \\ B^2-4AC=-60 \\ \\ B^2-4AC<0 \\ \\ because\text{ }-60<0 \end{gathered}[/tex]

Thus;

[tex]B^2-4AC<0,\text{ then the conic section is an ellipse}[/tex]

ANSWER: The equation given is an ellipse.

The standard form of an ellipse is;

[tex]\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1[/tex][tex]\begin{gathered} \frac{(x-2)^2}{(\sqrt{5})^2}+\frac{(y-(-3))^2}{(\sqrt{3})^2}=1 \\ \\ \frac{(x-2)^2}{5}+\frac{(y+3)^2}{3}=1 \end{gathered}[/tex]