Recall that the kinetic energy is given by
[tex]KE=\frac{1}{2}\cdot m\cdot v^2[/tex]Where KE is the kinetic energy, m is the mass, and v is the speed.
For the given case, we have
KE = 1.44 J
m = 4.5 kg
Let us substitute these values into the above equation and solve for speed (v)
[tex]\begin{gathered} KE=\frac{1}{2}\cdot m\cdot v^2 \\ 1.44=\frac{1}{2}\cdot4.5\cdot v^2 \\ 1.44=2.25\cdot v^2 \\ \frac{1.44}{2.25}=v^2 \\ 0.64=v^2 \end{gathered}[/tex]Take square root on both sides of the equation
[tex]\begin{gathered} \sqrt[]{0.64}=\sqrt[]{v^2} \\ 0.8=v \\ v=0.8\; \; \frac{m}{s} \end{gathered}[/tex]Therefore, the speed is 0.8 m/s