Respuesta :

Explanation

We must find the equivalent expressions to:

[tex]81^x.[/tex]

We will rewrite each expression to check its equivalency.

A. Using the fact that 9 * 9 = 81, we have:

[tex]\lparen9\cdot9)^x=81^x\text{ \checkmark}[/tex]

B. Using the distributive property for powers, we have:

[tex]9^x\cdot9^x=\lparen9\cdot9)^x=81^x\text{ \checkmark}[/tex]

C. Taking into account point B, we see that:

[tex]9\cdot9^x\ne9^x\cdot9^x=81^x\text{ ^^^^2716}[/tex]

D. Taking into account point B, we see that:

[tex]9^2\cdot9^x\ne9^x\cdot9^x=81^{x\text{ }}✖[/tex]

E. Taking into account point B, we see that:

[tex]9\cdot9^{2x}=9\cdot9^x\cdot9^x\ne9^x\cdot9^x=81^x\text{ ^^^^2716}[/tex]

F. Rewriting the expression, we see that:

[tex]9^{2x}=(9^2)^x=81^x\text{ \checkmark}[/tex]Answer

The equivalent expressions are A, B and F.