This formula denotes the permutations of 8 total objects selected in a group of 6 and its equal to
[tex]\begin{gathered} 8P6=\frac{8!}{(8-6)!} \\ \end{gathered}[/tex]since 8-6=2, we get
[tex]8P6=\frac{8!}{2!}[/tex]which is equal to
[tex]\begin{gathered} 8P6=\frac{8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1}{2\cdot1} \\ 8P6=20160 \end{gathered}[/tex]then, the answer is 20160