Respuesta :

The product of 2 numbers is 352 and their sum is 38

Assume that the 2 numbers are x and y, then

[tex]\begin{gathered} x+y=38\rightarrow(1) \\ xy=352\rightarrow(2) \end{gathered}[/tex]

Use equation (1) to find y in terms of x

Subtract x from both sides

[tex]\begin{gathered} x-x+y=38-x \\ y=38-x\rightarrow(3) \end{gathered}[/tex]

Substitute y in equation (2) by equation (3)

[tex]x(38-x)=352[/tex]

Simplify the left side and subtract 352 from both sides

[tex]\begin{gathered} (x)(38)-(x)(x)=352 \\ 38x-x^2=352 \\ 38x-x^2-352=352-352 \\ -x^2+38x-352=0 \end{gathered}[/tex]

Multiply each term by -1

[tex]x^2-38x+352=0[/tex]

Factor the left side into 2 factors

[tex]\begin{gathered} x^2=(x)(x) \\ 352=(-22)(-16) \\ (-22)(x)+(-16)(x)=-38x \\ (x-22),(x-16) \end{gathered}[/tex]

The factors are (x - 22) and (x - 16)

[tex]\begin{gathered} x^2-38x+352=(x-22)(x-16) \\ (x-22)(x-16)=0 \end{gathered}[/tex]

Equate each factor by 0 to find x

[tex]x-22=0[/tex]

Add 22 to each side

[tex]\begin{gathered} x-22+22=0+22 \\ x=22 \end{gathered}[/tex]

OR

[tex]x-16=0[/tex]

Add