A system of equations is given, together with the inverse of the coefficient matrix. Use the inverse of the coefficient matrix to solve the system of equations.The solution of the system of equations is

In order to solve this system, we can use the following steps:
[tex]\begin{gathered} AX=B\\ \\ A^{-1}AX=A^{-1}B\\ \\ IX=A^{-1}B\\ \\ X=A^{-1}B \end{gathered}[/tex]So, to find the solution, let's multiply the inverse matrix with matrix B, which is the matrix of independent terms:
[tex]\begin{gathered} B=\begin{bmatrix}{-3} & {} \\ 8{} & {}\end{bmatrix}\\ \\ \\ \\ X=A^{-1}B=\begin{bmatrix}{11} & {-7} \\ {-3} & {2}\end{bmatrix}\begin{bmatrix}{-3} & {} \\ 8{} & {}\end{bmatrix}=\begin{bmatrix}11\cdot(-3)+(-7)\cdot8 & {} \\ -3\cdot(-3)+2\cdot8{} & {}\end{bmatrix}=\begin{bmatrix}{-33-56} & {} \\ {9+16} & {}\end{bmatrix}\\ \\ =\begin{bmatrix}-89 & {} \\ 25{} & {}\end{bmatrix} \end{gathered}[/tex]Therefore the solution is (-89, 25).