Respuesta :

We want to simplify the following expression

[tex]\sqrt{7x}(\sqrt{x}+7\sqrt{7})[/tex]

First, we can apply the distributive rule to rewrite this product

[tex]\sqrt{7x}(\sqrt{x}+7\sqrt{7})=(\sqrt{7x})(\sqrt{x})+(\sqrt{7x})(7\sqrt{7})[/tex]

Then, using the following property

[tex]\sqrt{x}\cdot\sqrt{y}=\sqrt{x\cdot y}[/tex]

we can rewrite our expression as

[tex](\sqrt{7x})(\sqrt{x})+(\sqrt{7x})(7\sqrt{7})=\sqrt{7x\cdot x}+7\sqrt{7x\cdot7}[/tex]

We can remove the squared terms out of the root

[tex]\sqrt{7x\cdot x}+7\sqrt{7x\cdot7}=x\sqrt{7}+7\cdot7\sqrt{x}=x\sqrt{7}+49\sqrt{x}[/tex]

and this is our answer.

[tex]\sqrt{7x}(\sqrt{x}+7\sqrt{7})=x\sqrt{7}+49\sqrt{x}[/tex]