Respuesta :

given a pair of lines

a parallel pair of lines is given whe the slope of both lines is the same or

[tex]m1=m2[/tex]

perpendicular is given when slope1 multiply by slope2 equals -1 or

[tex]m1*m2=-1[/tex]

first pair.

[tex]2x-4y=-4[/tex]

solving for y

[tex]y=\frac{4+2x}{4}=\frac{x+2}{2}[/tex][tex]y=\frac{1}{2}x+1[/tex]

then m1=1/2

[tex]3x-6y=9[/tex]

solving for y

[tex]-6y=9-3x[/tex][tex]y=\frac{x-3}{2}[/tex][tex]y=\frac{1}{2}x-\frac{3}{2}[/tex]

then m2=1/2

since both slopes are equal, first pair has paralel lines

2nd pair

[tex]2x+3y=12[/tex][tex]y=\frac{12-2x}{3}[/tex][tex]y=-\frac{2}{3}x+4[/tex]

then m1= -2/3

[tex]5x-4y=7[/tex][tex]y=\frac{-7+5x}{4}[/tex][tex]y=\frac{5}{4}x-\frac{7}{4}[/tex]

m2 = 5/4

since

[tex]m1*m2=-1[/tex][tex]-\frac{2}{3}*\frac{5}{4}=\frac{10}{12}[/tex]

second pair is neither parallel nor perpendicular

3rd pair

[tex]x+\frac{1}{2}y=2[/tex][tex]y=2(2-x)[/tex][tex]y=-2x+4[/tex]

then m1 = -2

[tex]\frac{1}{2}x+2y=4[/tex][tex]2y=4-\frac{1}{2}x[/tex][tex]y=-\frac{1}{4}x+2[/tex]

then m2=-1/4

[tex]m1*m2=-2*-\frac{1}{4}=2[/tex]

3rd pair is not a paralel line nor perpendicular line