Respuesta :

Hello!

First, let's remember how to write the equation in the slope-intercept form:

[tex]\mathrm{y=mx+b}[/tex]

• m ,= slope (angular coefficient)

,

• b ,= y-intercept (linear coefficient)

Knowing it, let's write each alternative in the slope-intercept form:

a.

• m = -2/3

,

• b = -5

[tex]y=-\frac{2}{3}x-5[/tex]

b.

m = 3

b = 0

[tex]\begin{gathered} y=3x+0 \\ y=3x \end{gathered}[/tex]

c.

m = 7

b = -3

[tex]y=7x-3[/tex]

d.

• m = 0

,

• b = 12

[tex]\begin{gathered} y=0x+12 \\ y=12 \end{gathered}[/tex]

To write the equation in the standard form, we just need to follow one step:

We will isolate the number without variables on one side of the equation. Look:

a. 2x +3y = -15

[tex]\begin{gathered} y=-\frac{2}{3}x-5 \\ \\ y+\frac{2}{3}x=-5\text{ let's remove the fraction by multiplying both sides by 3} \\ \\ (3)\cdot y+\frac{2}{3}x=-5\cdot(3)\text{ } \\ \\ 2x+3y=-15 \end{gathered}[/tex]

b. 3x -y =0

[tex]\begin{gathered} y=3x \\ 3x-y=0 \end{gathered}[/tex]

c. -7x +y = -3

[tex]\begin{gathered} y=7x-3 \\ y-7x=-3 \\ -7x+y=-3 \end{gathered}[/tex]

d. y = 12

[tex]y=12[/tex]