Respuesta :

Answer:

[tex](x-2)^2+(y-4)^2=25[/tex]

Explanation:

Given a circle with center N(2,4) and radius MN where M(-2,1).

First, we find the length of the radius using the distance formula.

[tex]\begin{gathered} MN=\sqrt[]{(-2-2_{})^2+(1-4)^2} \\ =\sqrt[]{(4_{})^2+(-3)^2} \\ =\sqrt[]{25} \\ r=5\text{ units} \end{gathered}[/tex]

The equation of a circle is of the form:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

(h,k)=N(2,4), r=5

Therefore, the equation is:

[tex]\begin{gathered} (x-2)^2+(y-4)^2=5^2 \\ (x-2)^2+(y-4)^2=25 \end{gathered}[/tex]