Respuesta :

First, let's determine the vertex of the parabola, we can do it by using the expression that gives us the coordinate x and y of the vertex, for the x-coordinate we have

[tex]x_V=-\frac{b}{2a}[/tex]

And the y-coordinate

[tex]y_V=-\frac{\Delta}{4a}[/tex]

And the vertex is

[tex]V=(x_V,y_V)[/tex]

Applying the formula

[tex]\begin{gathered} x_V=\frac{-12}{2\cdot(-2)}=3 \\ \\ y_V=\frac{144-4\cdot(-2)\cdot(-19)}{4\cdot(-2)}=\frac{-8}{8}=-1 \end{gathered}[/tex]

The vertex is

[tex]V=(3,-1)[/tex]

Let's plot two points to the right of the vertex, which means x > 3, I'll pick x = 4 and x = 5

[tex]\begin{gathered} f(x)=-2x^2+12x-19 \\ \\ f(4)=-2\cdot4^2+12\cdot4-19=-3 \\ \\ f(5)=-2\cdot5^2+12\cdot5-19=-9 \end{gathered}[/tex]

Then two points at the right of the vertex are

[tex]\begin{gathered} (4,-3) \\ \\ (5.-9) \end{gathered}[/tex]

And at the left, I'll pick 0 and 1

[tex]\begin{gathered} f(0)=-19 \\ \\ f(1)=-9 \end{gathered}[/tex]

Therefore the points are

[tex]\begin{gathered} (0,-19) \\ \\ (1,-9) \end{gathered}[/tex]

Final answer:

[tex]\begin{gathered} \text{ vertex:} \\ V=(3,-1) \\ \\ \text{ right points:} \\ (4,-3) \\ \\ (5,-9) \\ \\ \text{ left points:} \\ (0,-19) \\ \\ (1,-9) \end{gathered}[/tex]

Ver imagen RexalynnQ493866