There exists two coordinates A (6,1) and B (4,9). C is the midpoint between A and B. Find the distance between coordinates A and C. Round your answer correct to 3 decimal places.

Respuesta :

Given:

There are given that the coordinates:

[tex]A(6,1),and,B(4,9)[/tex]

Explanation:

First, we need to find the mid-point of c by using the given coordinate point A and B.

Then,

To find the midpoint, we need to use the midpoint:

So,

Fro the formula of midpoint:

[tex]C=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Where,

[tex]x_1=6,y_1=1,x_2=4,y_2=9[/tex]

Then,

Put all the values into the above formula:

So,

[tex]\begin{gathered} C=(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}) \\ C=(\frac{6+4}{2},\frac{1+9}{2}) \\ C=(\frac{10}{2},\frac{10}{2}) \\ C=(5,5) \end{gathered}[/tex]

So,

The point of C is, (5, 5).

Now,

We need to find the distance between A(6,1)and C(5,5):

So,

From the distance formula:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Where,

[tex]x_1=6,y_1=1,x_2=5,y_2=5[/tex]

Then,

Put all values into the above formula:

[tex]\begin{gathered} d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ d=\sqrt{(5-6)^2+(5-1)^2} \\ d=\sqrt{(-1)^2+(4)^2} \end{gathered}[/tex]

Then,

[tex]\begin{gathered} d=\sqrt{(-1)^2+(4)^2} \\ d=\sqrt{1+16} \\ d=\sqrt{17} \\ d=4.123 \end{gathered}[/tex]

Final answer:

Hence, the midpoint C and distance of A and C is shown below:

[tex]\begin{gathered} C=(5,5) \\ Distance:4.123 \end{gathered}[/tex]