Given:
There is a equation given in the question
[tex]3x^2-10=0[/tex]Required:
Solve equation by difference of squares formula.
Explanation:
First of all divide left side with 3
[tex]\begin{gathered} \frac{3x^2-10}{3}=0 \\ x^2-\frac{10}{3}=0 \end{gathered}[/tex]We have formula for difference of squares
[tex]a^2-b^2=(a-b)(a+b)[/tex]as formula
[tex]\begin{gathered} x^{2}-\frac{10}{3}=0 \\ (x-\sqrt{\frac{10}{3}})(x+\sqrt{\frac{10}{3}}_)=0 \\ x=\pm\sqrt{\frac{10}{3}} \end{gathered}[/tex]Final answer:
Solution of given equation is
[tex]x=\operatorname{\pm}\sqrt{\frac{10}{3}}[/tex]