Respuesta :
[tex]\begin{gathered} y=x+7 \\ y=-2x-8 \end{gathered}[/tex]
To solve this system of equations graphical method find two coordinates (x,y) for each line (each equation)
First equation:
[tex]y=x+7[/tex]Find the value of y when x=0
[tex]\begin{gathered} y=0+7 \\ y=7 \end{gathered}[/tex]First point: (0,7)
Find the value of x when y=0
[tex]\begin{gathered} 0=x+7 \\ 0-7=x \\ -7=x \end{gathered}[/tex]Second point (7,0)
Second equation:
[tex]y=-2x-8[/tex]Find the value of y when x=0
[tex]\begin{gathered} y=-2(0)-8 \\ y=-8 \end{gathered}[/tex]First point (0,-8)
Fins the value of x when y=0
[tex]\begin{gathered} 0=-2x-8 \\ 0+8=-2x \\ 8=-2x \\ \frac{8}{-2}=x \\ \\ -4=x \end{gathered}[/tex]Second point (-4,0)
--------------------------
To graph put the points (x,y) in the plane and link correspondig pair of points to for a line that represents each equation:
First equation in red, second equation in blue
The solution for the system is the point where the lines cross: (-5,2)
