Respuesta :

Consider the triangle BDC.

Determine the length of side BD by using pythagoras theorem.

[tex]\begin{gathered} (BD)^2=(x)^2-(3)^2 \\ =x^2-9 \end{gathered}[/tex]

Consider triangle ABC.

Determine the length of side AB by using pythagoras theorem.

[tex]\begin{gathered} (AB)^2=(27)^2-x^2 \\ =729-x^2 \end{gathered}[/tex]

Consider the triangle ABD.

Determine the length of side BD by using the pythagoras theorem.

[tex]\begin{gathered} (BD)^2)=(AB)^2-(AD)^2 \\ =729-x^2-(24)^2 \\ =153-x^2 \end{gathered}[/tex]

So,

[tex]\begin{gathered} 153-x^2=x^2-9 \\ 153+9=2x^2 \\ x^2=\frac{162}{2} \\ x=\sqrt[]{81} \\ =\pm9 \end{gathered}[/tex]

The value of length can never be negative. So x = 9.

Thus length of side BC is 9 units.