EXPLANATION
Given the quadratic equation 4x^2 + 4y^2 -16x +24y=-27
As we already know, the circle equation with a radius r, centered at (a,b) is;
[tex](x-a)^2+(y-b)^2=r^2[/tex]
Dividing by coefficient of square terms: 4
[tex]x^2+y^2-4x+6y=-\frac{27}{4}[/tex]
Group x-variables and y-variables together:
[tex](x^2-4x)+(y^2+6y)=-\frac{27}{4}[/tex]
Convert x to square form:
[tex](x^2-4x+4)+(y^2+6y)=-\frac{27}{4}+4[/tex]
Convert to square form:
[tex](x-2)^2+(y+3)^2=-\frac{27}{4}+4+9[/tex]
Refine -27/4+4+9
[tex](x-2)^2+(y-(-3))^2=(\frac{5}{2})^2[/tex]
Therefore the circle properties are:
center: (a,b)=(2,-3), radius=5/2
The graph is as follows: