Respuesta :

Explanation:

For the given function

[tex]f(x)=\frac{1}{(x+3)}-2[/tex]

We are told to Graph the function

The graph is given below

Thus

The Domain of the function is

[tex]\begin{bmatrix}\mathrm{Solution\colon}\: & \: x<-3\quad \mathrm{or}\quad \: x>-3\: \\ \: \mathrm{Interval\: Notation\colon} & \: \mleft(-\infty\: ,\: -3\mright)\cup\mleft(-3,\: \infty\: \mright)\end{bmatrix}[/tex]

The Range of the function is

[tex]\begin{bmatrix}\mathrm{Solution\colon}\: & \: f\mleft(x\mright)<-2\quad \mathrm{or}\quad \: f\mleft(x\mright)>-2\: \\ \: \mathrm{Interval\: Notation\colon} & \: \mleft(-\infty\: ,\: -2\mright)\cup\mleft(-2,\: \infty\: \mright)\end{bmatrix}[/tex]

The Asymptotes are

[tex]\begin{gathered} \mathrm{Vertical}\colon\: x=-3,\: \\ \mathrm{Horizontal}\colon\: y=-2 \end{gathered}[/tex]

It is decreasing on

[tex]\mathrm{Decreasing}\colon-\infty\:

It is increasing on

[tex]\text{None}[/tex]

Limits

[tex]\begin{gathered} \lim _{x\Rightarrow3^-}f(x)=-\infty \\ \\ \lim _{x\Rightarrow3^+}f(x)=\infty \end{gathered}[/tex]

Ver imagen DwijaY220774