Respuesta :

We have the expression:

[tex]11r^2+10=0[/tex]

We can write the quadratic equation as:

[tex]\begin{gathered} r=-\frac{0}{2\cdot11}\pm\frac{\sqrt[]{0^2-4\cdot11\cdot10}}{2\cdot11} \\ r=\pm\frac{\sqrt[]{-440}}{22} \\ r=\pm\frac{\sqrt[]{4\cdot(-110)}}{22} \\ r=\pm\frac{2}{22}\sqrt[]{-110} \\ r=\pm\frac{\sqrt[]{110}}{11}i \\ r=\pm\sqrt[]{\frac{11\cdot10}{11\cdot11}i} \\ r=\pm\sqrt[]{\frac{10}{11}}i \end{gathered}[/tex]

The roots of the expression are r=-√(10/11)*i and r=√(10/11)*i (complex roots).

Otras preguntas